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Abstract. The ~ ~ ~ ~ ~ p e i ~ t ~ ~ d e f i n i n g  thecohamolagygraups forthequantumSU(Z1 group 
is constructed. 

1. Introduction 

The non-commutative geometry [ I ]  is now supposed to be of some relevance to physics. 
This is at least the case as far as quantum groups are concerned [2-51. They are finding 
application in 2~ solvable model S-matrices [6,7], 3~ Chern-Simmons theories [SI as 
well as conformally invariant theories in two dimensions [9]. There are also some 
attempts to find phenomenological applications [lo]. 

Tke theory of q~antcm groups is quick!y developing. The notions of quan!cm 
spaces (quantum hyperplane [ l l ] ,  quantum sphere [12]), differential calculi [ 5 ,  13, 141 
and linear representations [3,4] were introduced and studied in some detail. The aim 
of such investigations is to supply us, by generalizing the rich mathematical structures 
related to ordinary Lie groups, with suitable tools to analyse the problem of whether 
quantum groups provide the proper extension of the notion of symmetry in physics. 

One of the most important notions in physics is that of gauge symmetry. Gauge 
theories are most conveniently quantized using the ERST method. It is well known [15] 
that ERST symmetry is closely related to the cohomology theory on gauge groups. In 
particular, the standard cohomology on compact Lie groups can be viewed as a ERST 

transformation for constant field configurations [ 161. 
If one believes seriously that the notion of quantum groups provides a proper 

generalization of ordinary symmetry one can pose the question of what is the generaliz- 
ation of gauge or ERST symmetry. We propose to use the observation made in [ 161 as 
a starting point in answering this question. Once the differential calculus on the compact 
quantum group has been introducedt one can study the relevant cohomology theory 
[3]. We follow the lines of [I61 and construct the +ERST opera!or’ realizing the same 
cohomology theory. This operator is constructed in terms of ‘ghost’ variables belonging 
to the deformed Grassman algebra and the linear representation of deformed Lie 
algebra, We study here only the simplest example-the twisted SU(2) group [3]. The 
general construction for bicovariant differential calculi [5 ,  131 is postponed to a further 
publication [17]. 

t We use the formalism developed by Woronowicz [3-51. 
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2. Classical cohomology 

It is well known [I81 that for the compact Lie groups De Rham cohomology (and also 
the equivalent singular cohomology) can be reduced to the one based on left- or 
right-invariant differential forms. This can be understood as follows. One first notes 
that any form can be written in a basis spanned by (say) left-invariant forms, Due to 
the identity 

df=dx"  J,f= w"V,f (1) 

where wLI are the left-invariant forms and V m  the left-invariant fields, one can write 

d(f, ,...= Lwu" A . .  . A  m y * )  

= V& ...eLw A om' A . . . A wok +fa ,  ..." d(w" A . . . A U " ' ) ,  (2)  

Using the Peter-Weyl theorem we next observe that can be replaced by the 
matrix elements of irreducible representations. Then the action of V,, in (2) is equivalent 
to an infinitesimal group transformation. If we note that (i) the infinitesimal group 
transformation of the matrix elements of a given representation is given in terms of 
the representation of the corresponding Lie algebra and (ii) dw" is determined by 
Cartan-Maurer equations, we conclude that our cohomology theory is reduced to the 
following algebraic problem [19]. We consider the tensor product V O A ( w )  where V 
is the representation space of the Lie algebra under consideration and A(") is the 
exterior algebra spanned by w's, and define the operator 

d( f O I )  = G,fOw" A I +  f O d i  f c  v C E N W )  G,eEnd(V). (3)  

Here G, are the generators of the Lie algebra in a given representation and dw" is 
determined by Cartan-Maurer equations. The cohomology groups of the operator (3) 
determine those of the group manifold. It is not difficult to show that for compact Lie 
groups (algebras) the non-trivial cohomology groups are obtained only provided the 
representation { G m }  contains the trivial subrepresentation. If we finally note that the 
regular representation contains the trivial one exactly once we conclude that De Rham 
cohomology is equivalent to the one based on invariant forms. 

The cohomology defined by (3 )  can be realized as BRST transformations for constant 
field configurations [16]. To this end one introduces the ghost variables and ghost 
momenta c y  and IIm, which fulfil the (anti)commutation rules 

(c". c P } = O  a, n,) = 0 {C", IIP} = S", (4) 

n = c"G, +- c'cPf"*J,. 

and define the BRST operator 

( 5 )  
I 

2 

Here fnpl are the Lie algebra structure constants, [ G,, G,] = ifopyGir. Cl is nilpotent 
and defines the same cohomology as that given by (3). This is easily seen by noting 
that the representation space for the operators G,, c" and n, consists of vectors of 
the form [I61 
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One can also define the anti-sns-r operator CL+ [16], which is the Hermitian conjugate 
of fl with respect to a positive-definite scalar product, and the analogue of the Laplacian 

W = (fl+n+)2= nn+ +n+n. (7)  

As an easy consequence of representation theory for ERST algebra one obtains the 
‘Hodge’ decomposition theorem: 

*=w+fl,y+fl+rp w w  = 0. (8) 

Therefore the cohomology classes are determined by ‘harmonic’ states w. Now, W can 
be written as a sum of squares, one of which is simply the Casimir operator for the 
group under consideration. Consequently, the harmonic states must be singlets of Lie 
algebra. This is equivalent to the statement given previously: in order to obtain 
non-trivial cohomology the representation under consideration must contain a trivial 
subrepresentation. Let us stress again that if we choose the generators G, belonging 
to the regular representation then (i) the operators d i n  (1) and (3) are equivalent, (ii) 
the action of fl (a’) becomes equivalent to that of d(S) and (ii i)  (8) becomes the 
Hodge decomposition theorem. 

3. Quantum cohomology 

In order to carry over the above construction to the case of the twisted SU(2) group 
let us recall the structure of differential calculus over SU,(2). The Cartan forms W O ,  

U ’ ,  w 2  fulfil the commutation rules 

(,)On n o ’  = w 2 n  w 2 =  0 
1 0  4 0  w A w  = - p o l  A w ’  

2 0  2 0  2 
0 A w  = - p w  n o  

w 2 A l 0 ’ = - p 4 W ’ A l O 2  

and Cartan-Maurer equations 

d u o =  p 2 ( 1 + p 2 ) w 0 n  w’ 

d w ’ = p w o h  w 2  

dw2=p2(1+p2)w1Aw2 

The Lie algebra of SU,(2) reads [3] 

pG2G,--GG,G,=G, 
1 

P 

(9) 
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In order to construct the BRST operator we first introduce three ghost variables fulfilling 
the same commutation rules as w s :  

clCO= -p4cocl 

(c0)2=(c')2= (c2)2=0. 

We have to also introduce the conjugate momenta no, Il,, n,. The commutation rules 
for them which are consistent with the associativity read 

n;=n:=n;=o { ~ " , n , i = ~ ~ ' , n , ~ = ~ ~ ~ , n , ~ = 1  
n,n,= -p4n0n, 
n2no = -@'non2 
n,n, = -p4nln2 

n o c 1  = -p4~'n0. con, = -w 4 "  n,c 
noc2 = -@'C2n,, con ,  = -w2n2co 
n , c 2 =  -p4~2n, ,  C T I , = - ~ ~ ~ , ~ ~ .  

(13) 

Let us now consider the following operator: 

n =  COG^+ c ~ G , +  c%,+ii  

ii = $(1+ p2)(cOc~Il0+ c'c2n,)+pcOc2nl + p2(1+p2)(p4- l)cOc'c2n2na. 
(14) 

Here G, belong to some linear representation of the algebra (11). It is easy to check 
that R is nilpotent. 

Woronowicz [3] defines the cohomology theory using the basic equations (3), ( 9 ) ,  
(10) and (11). In order to prove that our operator n gives the same cohomology classes 
it is sufficient to note that: 

(i) The operators cm, n, and G, act in the space of vectors of the form 

(ii) The following anticommutation rules hold: 

{n, CO] = p2(1 +p*)cOc' 

{n, c ' }  = p c  c 

{ii, c2} = p2( 1 + p2) c' c2. 

(16) 0 2  

Therefore, with the definition adopted, Cl is a good candidate for a BRST operator. 
Following the lines of [16] we introduce the scalar product of vectors (15 )  

3 

(17) ,,,(XI (dJ[cl, $[cl) = z z (dJLk,!Lk, ', ,... ,,)w 

(CO)' =no 
(Cl)+ = Ill[ 1 + (pR - 1 )cono] 

(e")' =n2[1 + ( p 4 -  l)c"n,l[l +(pX- l)c" 

n: = c2[ i+(p-4-  i)cono][i + w -  i )~ 'n , ] .  

k = O  o i c  ... < m i  

Then we have 

n:= C'[l +(p-R-l)cOn"I 
(18) 
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The anti-ms-r operator flt reads 

R' = -IIop-'G2 +n,[ 1 + ( p 8  - I ) C ~ I I , ] G ,  

-I12[1+(p4- l)coII0][l + ( p 8 -  l)c'II,]pG0+fi+ 
(19) f i + = -  + / ~ ~ ) n , c ~ n , - ~ ~ ~ T ~ ~ n ~  

+*'(I +$)[I +(,& i)~~n,i~~n,n, +$(I +cL2)(i -p4)~ono~2n2n,.  
As in [16] we can prove the decomposition theorem (equation ( 8 ) ) .  In fact, it relies 
only on the structure of ERST algebra which is here the same. It again follows that the 
cohomology classes are determined by harmonic forms. One can check that the 
non-trivial cohomologies result from trivial subrepresentations only in accordance 
with [3]. 

Let us conclude with a few remarks. We have constructed the ERST operator which 
gives the realization of the cohomology theory of [3] in terms of deformed Grassman 
algebra. However, contrary to the 'classical' case, there seems to be no natural choice 
of differential calculus over a quantum group. The resulting cohomology groups depend 
of course on the choice of calculus. Therefore, the ERST operator (quantum BRST 

symmetry?) is not uniquely determined by the structure of the quantum group. 
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